Support-Limited Generalized Uncertainty Relations on Fractional Fourier Transform

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-D affine generalized fractional Fourier transform

The 2-D Fourier transform has been generalized into the 2-D separable fractional Fourier transform (replaces 1-D Fourier transform by 1-D fractional Fourier transform for each variable) and the 2-D separable canonical transform (further replaces the fractional Fourier transform by canonical transform) in [3]. It also has been generalized into the 2-D unseparable fractional Fourier transform wit...

متن کامل

Two-dimensional affine generalized fractional Fourier transform

As the one-dimensional (1-D) Fourier transform can be extended into the 1-D fractional Fourier transform (FRFT), we can also generalize the two-dimensional (2-D) Fourier transform. Sahin et al. have generalized the 2-D Fourier transform into the 2-D separable FRFT (which replaces each variable 1-D Fourier transform by the 1-D FRFT, respectively) and 2D separable canonical transform (further rep...

متن کامل

Uncertainty Principle of the 2-D Affine Generalized Fractional Fourier Transform

The uncertainty principles of the 1-D fractional Fourier transform and the 1-D linear canonical transform have been derived. We extend the previous works and discuss the uncertainty principle for the two-dimensional affine generalized Fourier transform (2-D AGFFT). We find that derived uncertainty principle of the 2-D AGFFT can also be used for determining the uncertainty principles of many 2-D...

متن کامل

Uncertainty relations and minimum uncertainty states for the discrete Fourier transform and the Fourier series

Abstract The conventional Fourier transform has a well-known uncertainty relation that is defined in terms of the first and second moments of both a function and its Fourier transform. It is also well known that Gaussian functions, when translated to an arbitrary centre and supplemented by a linear phase factor, provide a complete set of minimum uncertainty states (MUSs) that exactly satisfies ...

متن کامل

Fractional Fourier Transform

Abstract The integral transform method based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the generalized Weyl space-fractional operator. The solutions, representing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Signal and Information Processing

سال: 2015

ISSN: 2159-4465,2159-4481

DOI: 10.4236/jsip.2015.63021